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Abstract

The stability of equilibrium of non-linearly elastic rods, whose deformations obey the classical Kirchhoff’s equations,
is considered. A variational formulation of the equilibrium problem is given, and the equilibrium equations for in-
finitesimal deformations superimposed to a finite transformation of a rod are deduced. The stability of annular rings, in
which the twisting strain is non-null, is investigated by study of the second variation of the energy functional.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In this paper we examine the problem of stability of equilibrium configurations of elastic rods in the
context of a theory that is a generalization to non-linear constitutive equations of the classical Kirchhoff’s
theory of inextensible rods. According to a general concept of static stability, an equilibrium configuration
of an hyperelastic body is stable when it realizes a minimum of the energy, and, hence, the stability of a
state of equilibrium is usually examined by an analysis of the second variation of the energy functional (cf.
Coleman and Noll, 1959; Truesdell and Noll, 1965, Sections 68bis, 89; Wang and Truesdell, 1973, Chapter
VII; Tooss and Joseph, 1997, Chapter XII). In the present paper, in view of obtaining the tools for a
discussion on the stability of equilibrium of inextensible rods, we give a characterization of the equilibrium
equations as the extremals of a functional ¢, which is obtained by adding to the energy functional a term
that accounts for the presence of the kinematical constraint expressing the assumption that the rod axis is
inextensible. Then we deduce the form that &% ¢, the second variation of ¢, takes on an extremal, so that we
can investigate the stability of an equilibrium state by checking the sign of &°_#. In the perspective of using,
to test the sign of &% ¢, functions having the same form as the eigenfunctions of the linearized equilibrium
problem, we also deduce the equilibrium equations for infinitesimal deformations superimposed to a finite
transformation of a rod from a natural state to a state of equilibrium. As an application of the derived
equations, we discuss the stability of annular rings for which the measure u; of twisting strain with respect
to a natural state is non-null. These circular equilibrium configurations can be thought of as having been

E-mail address: lembo@dma.unirom3.it (M. Lembo).

0020-7683/02/$ - see front matter © 2002 Elsevier Science Ltd. All rights reserved.
PII: S0020-7683(02)00546-2



318 M. Lembo | International Journal of Solids and Structures 40 (2003) 317-330

obtained by joining and sealing the two ends of rods that are open in a natural state. We consider circular
rings formed from materially homogeneous inextensible rods obeying Kirchhoff's linear constitutive
equation and whose axes are curves of uniform curvature and torsion in a natural state. Annular equi-
librium configurations with p; # 0 are possible for two classes of rods of this type. The rods of the first class
have the shape of an helix when undeformed and, for them, the twisting strain g, in the annular config-
uration equals the opposite of the geometric torsion of the axial curve in a natural state. The rods in the
second class are prismatic in a natural state and are deformed in a circular ring after the imposition of an
amount x; of uniform twist density. For these rods, the twisting strain p; in the circular equilibrium
configuration equals the twist density x3;. We shall call the rods of the two classes naturally helicoidal and
naturally straight, respectively. It is known that, for a naturally straight rod, there is a critical amount of the
absolute value of the twist density x; = u; in the circular configuration, and that, for |k;| greater than the
critical value, the annular configuration (in which the axial curve is a circle) is unstable and the rod tends to
buckle into a configuration in which the axial curve is not planar. We examine in detail the problem of
stability of annular rings formed from naturally helicoidal rods. We find that the equations governing the
stability problem for this class of rods depend on two dimensionless parameters which are defined in terms
of the (invariable) length of the axial curve and its curvature and torsion in a natural state. The values of
these two parameters for which the equations of the linearized equilibrium problem have non-trivial so-
lutions, define a family of eigencurves. The study of the sign of 8 ¢ shows that this second variation
vanishes on the eigencurves and that there is a loss of stability of the annular configuration in crossing the
first eigencurve. The results of the discussion on the stability furnish the values of the curvature, torsion,
and length of the undeformed axial curve for which the corresponding annular equilibrium configuration is
stable.

The problem of stability of elastic rods has attracted the attention of the researchers since Euler’s dis-
covery of the phenomenon of buckling (1743) and the first investigations of Euler, Daniel and John Ber-
noulli, and Lagrange on the load that may cause the bending of a compressed column (cf. Truesdell, 1960;
Timoshenko, 1983). The literature concerning the stability of rods is voluminous and continuously enriched
by new studies that elucidate previously unknown aspects of the problem or present new applications of
existing theories. Among recent contributions to the subject, we recall Green et al. (1968), Antman (1984),
Caflish and Maddocks (1984), Maddocks (1984), and refer the reader to Antman (1995) for a modern
presentation of the matter including recent results and an extensive bibliography. The interest for the
problem here considered of the stability of annular rods, besides the possible mechanical applications, is
related to the use of rod theory to construct an elastic model for the DNA molecule (cf. e.g., Coleman et al.,
1995; Swigon et al., 1998). A segment of DNA is usually represented as a double helix in which two strands
wind around a common axis that may form a closed and/or not planar curve. In applications of the
elasticity theory to the study of DNA, the molecule is usually viewed as an homogeneous inextensible elastic
rod with uniform cross-sections; a configuration of the rod specifies a configuration of the DNA molecule
because it gives the position in space of the duplex axis and the rate of twisting of the strands about the axis.
Recent studies consider the behavior of molecules of DNA in configurations that are not relaxed (natural)
states. This is the case, for instance, of the paper (Tobias et al., 1996), where some finite motions of pure
torsion possible for closed circular loops of DNA are presented, and the difference in behavior between
loops formed from naturally straight rods and loops formed from rods that possess intrinsic uniform
curvature and torsion are discussed. In cases of this type, that deal with states of equilibrium that are not
stress-free, the knowledge of the properties of stability of equilibrium configurations may be of interest.
Among recent works that employ the elastic rod model for the study of stability of DNA configurations, we
recall Tobias et al. (2000) and Coleman et al. (2000).

The present paper is organized as follows: Section 2 gives a presentation of the rod theory on which the
subsequent analysis is based; Section 3 contains a formulation of the equilibrium equations of rods as the
extremals of a functional ¢ and includes a deduction of the second variation of this functional; in Section 4
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the equilibrium equations for infinitesimal deformations from an arbitrary equilibrium configuration of the
rod are derived; finally, in Section 5, as an application of the results of the preceding sections, the stability
of annular rings with non-null twisting strain is discussed. In the paper the summation convention is
adopted, with the agreement that Latin indices range over {1,2,3} and Greek indices over {1,2}. The
symbol ® is used to denote the tensor product # ® v of two vectors u and v, that assigns to each vector a the
vector (a-v)u.

2. Equilibrium equations

In the rod theory here considered the kinematics is the same as that of Kirchhoff’s non-linear theory of
inextensible rods (cf. Love, 1944; Dill, 1992; Coleman et al., 1992), but the constitutive equation for the
moment vector is more general, because it is assumed only that the rod is hyperelastic without imposing a
linear dependence of the moment upon the strain measure.

A rod Z is regarded as a three-dimensional body possessing an undistorted stress-free configuration €"
that can be described as follows: Let " be a smooth space curve defined by the equation x" = x"(s), with s
an arc-length parameter that varies over the interval [0, L]. In the configuration €", the positions ¥* of the
points of # are given by

(X, X, 8) = xU(s) + Xad| (s) + Xad5(s), (1)

where the pairs (X, X>) belong to a connected plane region, and d}(s) and d;(s) are unit vectors orthogonal
to " at x"(s) and such that the triplet (d(s), d5(s),d5(s)), with d5(s) = dx"(s)/ds, is right-handed and
orthonormal. The cross-sections & (s) of £, i.e., the sets of points for which s is constant in (1), are assumed
to be congruent and such that they contain their centroids; the curve %" is taken to be the locus of these
centroids. The material points that are on " form the axis of 2, and " is called the axial curve of Z# in the
configuration €". For each s, the vectors d|(s) and d;(s) are chosen to have the directions of the principal
axes of inertia of &(s). When the three-dimensional body £ is called a rod, it is presupposed that the
maximal distance between two points of a cross-section is small compared to the length L of the axial curve.
A rod of the type here considered is inextensible in the sense that, in its deformations, the change in arc-
length distance between points of the axis can be disregarded.

In each configuration €, the points of the axis form a curve %, the axial curve of # in €, which is de-
scribed by an equation of the form x = x(s). Since the rod inextensible, s is an arc-length parameter for &
and the derivative of x with respect to s is the unit tangent #(s) at the point x(s) of &:

((s) = L x(s) = x.(0) ©)

At each point x(s) in the configuration €, let 4, (s) and d,(s) be the unit vectors having the directions of the
material fibers that lie along d|(s) and d5(s), at x"(s) in the configuration €". The vectors d,(s) and d,(s)
can be regarded as orthogonal to each other and to the curve & (cf. Love, 1944, Art. 252; Dill, 1992). The
configuration € is determined by giving: (i) the equation x = x(s) of the axial curve %, and (ii) the vector-
valued function d, = d,(s). Then, at each point x(s) of € can be associated a triad (d;(s),d,(s), d;(s)) of
orthonormal vectors, with d;(s) = #(s) and d,(s) = d5(s) x d,(s). Since the triplets (d,, d,,d;) are formed
by orthogonal unit vectors, there exists a vector

K(s) = k;(s)d;(s) = %d,-(s) x d;(s), (3)

called the curvature vector for the configuration €, such that
d;(s) =x(s) xdi(s), i=1,2,3. 4)
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The components x, = k - d, of k are called components of curvature and give the geometric curvature £ of
the axial curve through the formula k = ,/x,x,; the component k3 = « - d3, along the tangent to %, gives the
twist density of # in the configuration €. The unit vectors d;(s) and d»(s) lie in the plane of, but are in
general distinct from, the principal normal n(s) and the binormal b(s) of € at x(s). We denote by ¢(s) the
angle from n(s) to d,(s). The twist density x; of € and the geometric torsion 7 of ¥ are related by

K3 :T+(p,s' (5)

Let " be the curvature vector in the undistorted stress-free configuration €, and let R be the rotation that
transforms the triplets (dY, d5,d3) into the triplets (d,,d,,d5):

R(s) = di(s) @ d}(s), di(s) = R(s)d/(s), i=1,2,3. (6)
The vector
1
un=k— Rxk" = ERd? X Rd}, (7)

is the strain measure in the deformation that transforms the rod from €" to €; the components of u are:
w=p-di=x—x', i=1273, (8)

with x! = k" - d}'. The first two components of u give a measure of the flexural deformation of #; the third
component measures the twisting strain, given by the change in twist density.

When the only external loads acting on the rod are forces and couples applied to the ends, in an equi-
librium configuration € the following equations hold:

f,s = 0) m +d3 Xf = 05 (9)

where f = f(s), the force vector, is the resultant of the stresses acting on the cross-section at s, and
m = m(s), the moment vector, is the resultant moment of these stresses about the centroid of the section.
The force f is a reactive variable that is not constitutively determined; the moment m is obtained from the
strain measure through a constitutive equation. We assume that the rod is hyperelastic, with a strain energy
density per unit length ¢ = (g, 1y, i5;s) such that

d
m = md, m,-zm-d,»z%, i=1,2,3. (10)

The components m; and m, of m are the bending moments, and the component mj is the twisting moment. In
addition to Eq. (9), with m given by (10), in an equilibrium configuration must hold the equation

d3 :x,,\'v (11)

which follows from the assumption that the rod axis is inextensible. We shall refer to this constraint as the
condition of inextensibility.

When €" is assumed as reference configuration, a deformation of £ can be described by specification of
the displacement u of the points of the axis,

u(s) = x(s) — x"(s), (12)
and the rotation R defined by (6),. Thus a deformation of Z is determined by six scalar functions: the three

components of u and three parameters defining R, which are usually chosen to be Euler angles. These six
functions cannot be assigned arbitrarily because, by (6),, (11), and (12), they must be such that

(R—Dd} = u,, (13)
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where I is the unit tensor. Eq. (13) expresses the condition of inextensibility in terms of R and u. In view of
(6), (7) and (10), the equilibrium equations (9) and the constraint equation (13) form a system of three
(vectorial) equations for the three unknowns «, R, and f.

In the following two sections, that treat the variational formulation and the linearization of the equi-
librium equations, we do not specify the form of the strain energy density, and in particular we do not
assume that the components of m are linear functions of the components of u. In the special case in which
this assumption is made and the rod is composed of an isotropic material, Egs. (10), reduce to the classical
Kirchhoff’s linear constitutive relations in which

0 =5 () + Ao(pe)? + Clai)’), (14)

and, hence,

my = Ayl = A,(k, — x3), o=1,2, (no sum) (15)

my = Cpy = Ci3 — K3),

where 4, and 4, are the flexural rigidities and C is the torsional rigidity of the cross-sections. We shall adopt
a constitutive equation of the type (15) in Section 5 where the stability of annular rods is discussed.

3. Variational formulation

In this section we formulate a variational principle that characterizes the equilibrium configurations of an
hyperelastic rod # as the extremals of a functional # in which the force vector appears as a Lagrange
multiplier associated with the kinematical constraint (13). In view of applying our results to investigations
on the stability of equilibrium states, we also deduce the expression that the second variation of _# assumes
on an extremal, that is in correspondence of an equilibrium configuration of £.

Let € be an equilibrium configuration in which the rod # has been transformed from a stress-
free reference configuration €". The configuration € is determined by the displacement u of the points
of the axis from the curve ¢", and the rotation R that transforms the vectors d; of €" into the vectors
d; of €. A variation in the configuration € is characterized by a variation du of # and a variation dR
of R. As a consequence of the condition of inextensibility (13), the functions éu and SR are not inde-
pendent.

We observe that the variation 3R determines the variations dd; of the vectors d; and vice versa. Namely, it
follows from Egs. (6), that in correspondence of a variation dR the vectors d; undergo the variations

dd; = (3R)d} = (SR)R"d;, i=1,2,3. (16)

Let 8¢ denote the axial vector corresponding to the skew-tensor (SR)R', i.e., the vector 8¢ such that
3¢ x a = (SR)R"a for each vector a. The relationship between 8¢ and 3R can be expressed by the formulae

1
3¢ = 5d; (SR)R'd;, SR =d;® R"(d; x 3q), (17)

and, in terms of the vector d¢, the variations of the vectors d; can be written as
deZqud,', i= 172,3. (18)
Egs. (16)—(18) imply that

1
dq = 5d; x 3d;, SR = —d; ® R"(8d;), (19)
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and thus that the variations dd; determine d¢ and dR. Egs. (3), (7), (17), and (18) yield that the variation of
the strain measure u has the form

ou = 0q + 0q x p. (20)

From this equation, taking (18) into account, we have the following expressions for the variations of the
components of pu:

Su; = d(u-d) =0dq,-d;, i=1.2.3. (21)

Then from the constitutive equation (10), in view of (18) and (21), we deduce that
0o

S0 = a—ﬂl_?)ui =m-dq,, (22)
and
Jo
dm =35 a—di = Cdq , + ¢ x m, (23)
where the second-order tensor C is defined by
d%c
C=——d;2d,. 24
St 4 (24)

Eq. (22) yields that the variation of the strain energy % of % can be written as

L L
5%:8/ ads:—/ m - dqds + [m - 3q]}. (25)
0 0
We denote by # the work done by the external forces £ and couples m acting on the end sections of %, and
consider the functional
I=U—-W+ 2, (26)

obtained by adding to the energy associated with a deformation of # the term

7= /0 T — (R— DY) ds, (27)

which accounts for the condition of inextensibility (13), and in which the vector £ is a Lagrange multiplier.
Provided that € is identified with the force vector, the equilibrium equations of the rod are equivalent to
the condition that the equation

5.9 =0U — W +38L =0, (28)

holds for all smooth vectors du and 6g. When the external loads are assigned on both the ends of %, in Eq.
(28) the variation of the work done by the external loads is

dW = [f”-&u—&-ﬁr&]}z, (29)

where the form of the variation of the work done by the couples m is motivated by the form of the last term
in Eq. (25). By means of integration by parts, with the use of (18) and (25), and after identification of & with
f, Eq. (28) can be written as

L

L L .
E‘)j:—/fs~8uds—/(m73+d3><f)-6qu+ (f—f) du+(m—m)-dq| =0. (30)
o 0 0
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The form of this equation makes clear that 5_# = 0 for all du and 8¢ if and only if the equilibrium equations
(9) hold in (0, L), and, on the end sections, the force and moment vectors are equal to the applied external
loads f and m. We observe that the energy functional & associated with a deformation of Z is given by
& =9 — W, and that the variation (30) of ¢ coincides with the variation of the functional & for variations
of u and R which, in consequence of (13), obey the constraint

du, = dq x ds. (31)

Thus Eq. (30), can be regarded as expressing the condition that in equilibrium the energy functional & is
stationary, and the second variations of the functionals & and _¢ coincide.

The form that the second variation 8% ¢ assumes in correspondence of a state of equilibrium of the rod
can be derived from Eq. (30) taking into account that, on an extremal, the equilibrium equations hold and
thus the terms involving 3’x and &%¢ vanish. With the use of (18) and (23), and after integration by parts, we
find that the second variation of _# evaluated in correspondence of an equilibrium configuration is

L
sty = /0 (6m - 5q, + g x dy - 5q x f)ds. (32)

The sign of the expression (32) of &> ¢ gives essential information on the stability of an equilibrium con-
figuration. In particular, since a state of equilibrium in which the energy attains a minimum is regarded as
stable, if > < 0 in an equilibrium configuration, a necessary condition for minimization is not satisfied
and the equilibrium cannot be stable (cf., e.g., Antman, 1995, Chapter VII). Since, in what follows, to test
the sign of 8> ¢, we will use functions having the same form as the eigenfunctions of the linearized equi-
librium problem, in next section we consider infinitesimal deformations from an arbitrary equilibrium
configuration of a rod.

4. Linearization

In the deduction of the equilibrium equations for infinitesimal deformations superimposed to a finite
deformation of a rod, one is concerned with three configurations: a stress-free configuration €", an equi-
librium configuration € that is assumed as reference configuration, and an equilibrium configuration ¢’ that
is thought of as having been obtained through a deformation starting from €. We denote by a “prime” the
quantities pertaining to the configuration €', and introduce the rotation R’ that transforms the vectors d; of
€ into the vectors d; of €":

R =d,®d;, d =Rd, i=1,2,3. (33)
In the configuration €', the strain measure g can be written as
U =Ru+Ap, (34)

where pu is the strain measure (7) in € and, letting &’ be the curvature vector for €,

Ap=x—Rx = %R/di x R d;. (35)
The moment »7 in €' is

m =md, (36)
with m] = m;(1}, 1o, 14 s). Since the rod is in equilibrium in €, in this configuration we have

fi=0, m +d;xf =0, (37)

where f* is the force vector in €.
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We wish to find the form that Egs. (37) assume in cases in which the state of strain and stress in the
configuration € differs only slightly from the state in the configuration €. To this end, we observe that the
rotation R’ is determined by the unit vector z, giving the direction of the axis of rotation of R’, and the angle
¢ measuring the rotation about z. Denoted by W the skew-tensor corresponding to the vector w = ¢z, the
rotation R’ can be written in the form R’ = ¢", which yields

R =I1+W+0(W)). (38)

It follows from (33),, (34), (35) and (38) that, when the vector w and its first derivative are small, at the first
order the expressions of the vectors d), ¢/, and Ap are

d;:di"'WXdiv i:1a2a3a (39)
W=p+wxputw,, (40)
Apu=w,. (41)

In order to obtain the linearized expression of the constitutive equation, we observe that for the compo-
nents m; of m' we have
ami
Ko

where Aw; = i — p;, and \Au|2 = Ap;Ap;. With the use of (33),, (34), (38) and (42), Eq. (36) yields that, at
the same order to within (39)—(41) hold, m’ is given by

m =m+wxm+ Am, (43)
where
Am = Cw, (44)

and C is the tensor defined by (24). In analogy with the form of the linearized constitutive equation (43), we
write the force vector as

f=f+wxf+Af. (45)

Substitution of (39), (43) and (45) into Egs. (37), taking into account that € is an equilibrium configuration,
yields that, when w, its first two derivatives, and Af are small, the equilibrium equations for infinitesimal
deformations superimposed to the finite deformation that transforms € into €, are

we X f+Af =0, (46)

woxm+Amg+d; x Af =0, (47)

with Am given by Eq. (44). Moreover, from the Eq. (39) and the condition of inextensibility (11) written for
d,, it follows that, at the first order,

u,=wxds, (48)

where u is the displacement of the points of the axis from the axial curve % of the configuration €.

Eqgs. (46)—(48), with Am given by (44), constitute a system for the unknown vector functions u, w, and Af.
Eq. (48), which gives the linear form of the condition that the rod axis is inextensible, implies that the
displacement u is such that
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u,-d, =0, (49)
and that the vector w can be written as
W:d3 xuvs—&-ﬁd\;. (50)

This last equation shows that, at each x(s), the vector u(s) determines the two components of w(s) in the
plane orthogonal to the axial curve 4. Thus, given u, only one more scalar function of s (i.e., /) suffices to
complete the description of w. The function f appearing in Eq. (50) is the same as that introduced in Love
(1944, Art. 288) and has the same meaning of being the angle through which a section is rotated about the
axis in an infinitesimal deformation. In the system (46)—(48), Eq. (48) can be substituted by Eqs. (49) and
(50); thus, Egs. (46), (47), and (49), with w given by (50) and Am by (44), form a system for seven scalar
unknowns: the three components of u, 5, and the three components of Af.

5. Stability of annular rings with non-null twisting strain

The results of the preceding sections are now applied to a discussion on the stability of circular equi-
librium configurations, in which the twisting strain u; is non-null and that are obtained from materially
homogeneous elastic rods that possess uniform curvature and torsion in an undistorted stress-free con-
figuration. The rods we consider are made of a material obeying Kirchhoff’s constitutive equation (15) and
possess kinetic symmetry (Love, 1944, Art. 255) in the sense that in €" the two principal moments of inertia
of their sections are equal and, hence, we can put 41 = 4, = 4 in Eqgs. (15). For a rod of this type, an
annular equilibrium configuration with p; # 0 is possible only if the axial curve in a natural state is a
segment of either a cylindrical helix or straight line (Lembo, 2001), i.e., only if the rod is naturally helicoidal
or naturally straight. In that case, the circular ring is obtained from the natural state by sealing the two ends
of the rod after the imposition of a deformation with appropriate amounts of uniform flexural and twisting
strains.

In the annular equilibrium configuration €, the axial curve € of £ is a circle of radius R, with curvature
k=1/R and torsion T =0. Let (e,,e.,¢p) be the basis of a system of cylindrical coordinates (r,z,0) for
which the origin is at the center of %, the z-axis is orthogonal to the plane containing %, and the vector e,
has at each point of the space the direction pointing toward the z-axis. Along the axial curve % the basis
of the cylindrical coordinate system coincides with the Frenet basis (n,b,t) formed by the principal
normal, the binormal, and the tangent. We select the origin of the coordinate 0 in such a way that we
have 0 = 0 at the point of ¥ where s = 0, and hence 0 = ks. In this system of cylindrical coordinates the
vectors d;, d», and d; have the expressions

d; = cos ge, +sin pe., d, = —sin @e, + cos pe., d; = ey, (51)

where, as in Eq. (5), ¢ denotes the angle from n = ¢, to d,. Introduction of the expressions (51) into Eq. (3),
shows that the curvature vector for € is

K= k(ez + (pﬁel))a (52)

where, as we shall do in what follows, we have replaced the independent variable s by 0 = £s.

We firstly consider the more complex case in which in the configuration €" the axial curve 6" is a segment
of an helix. Let £* > 0 and " # 0 be the (uniform) curvature and torsion of ", and let (n", 5", ") be the
Frenet basis for this curve. Since the rod is kinetically symmetric and €" is stress-free, at each s the triad
(d},d3,dy) can be chosen coinciding with the Frenet basis of the helix. It follows from (3) that the curvature
vector in €" is

K= kd + d (53)
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Egs. (7), (52), and (53) yield that the strain measure in the deformation from €" to € is:

p = k"sin e, + (k — k" cos p)e. + (ko 5 — 1")ey. (54)
It is possible to show (cf. e.g., Lembo, 2001) that in the presence of the strain (54) and with m given by
Kirchhoff’s constitutive equation (15), the equilibrium equations (9) can be satisfied only if ¢ has the values
0 or £m. Egs. (51) show that the vectors d| = n" and d; = b" are transformed ine, =nande, =bif p =0,
and in —e, and —e, if ¢ = £n. We shall not consider the case ¢ = +r because the corresponding config-

urations are known to be unstable (Tobias et al., 1996). If ¢ = 0, from Eqgs. (15), (51), and (54) we have that
in € the moment is

m = m.e, + myey = Ak — k")e. — Ct'ey. (55)
Then the equilibrium equations (9) require that the force vector must be
f = kmgpe. = —kC7e.. (56)

In components with respect to the cylindrical coordinate system, the displacement of the points of the axial
curve in an infinitesimal deformation from € has the expression

u = u.e. + u.e. + upey, (57)
which, substituted into Eq. (50), furnishes
w = w.e, + w.e, + woeg = —ku.ge, + k(u, o + up)e. + Pey. (58)

For a kinetically symmetric rod, the strain energy o is given by (14) with 4, = 4, = A. Accordingly, the
tensor C defined by (24) is

C=A4(e,Re. +e.Re.)+ Cey ® ey, (59)
and, in view of (58), the constitutive equation (44) becomes

Am = Ak((B — ku-g0)e, + k(w00 + ugo)e:) + Ck(f o+ ku-)eq. (60)
We denote by Af,, Af., and Afy the components of the vector Af:

Af = Af.e, + Af.e. + Afyeq. (61)

When Egs. (55), (56), (58), (60), and (61) are introduced into the linearized equilibrium equations (46), (47)
and (49), a system of seven scalar equations for the seven unknown functions f3, u,, u., ug, Af,, Af., and Afy
is obtained. In order to write this system in a form more suitable for a discussion on the stability, we in-
troduce the dimensionless quantities €2, y, and 4, that are defined as

Q=C/4, y=k"/k=Rk", A=—-1"/k=—R1", (62)
and satisfy the relations
2>0, y>0, A#0. (63)

When A(Q + y) # 0, condition which in view of (63) always holds, the system of seven equations of the
linearized equilibrium problem is equivalent (cf., e.g., Ince, 1956, Chapter VI.41) to the system:

QB gogoo0 + (2 +y —1) + Q2 + izQZ))ﬁ,oooo +(2(Q+y—1)+Q+17Q —)B.o
+y(Q4y—1-2Q)p=0, (64)

(Q+ y)ku-00 + QB go — ¥B =0, (65)

/le(uH + I/Ig’g(.))ﬁ@ + (.Q +y)ﬁ790 — ku279999 + (Q -|—y — 1)](1/{2799 = O, (66)
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ugg —u, =0, (67)
Af + Al u g — AR (Q + y — Duzg — A (Q + y)B g — 2CK (uy0 + 1) g = 0, (68)
Afy — ACk* (B + kuo000) — AK (g 4 119,00) gogg = 0, (69)
Afy+ Afro — 2CK (B + ku.) y = 0, (70)

in which the first equation involves only the unknown function f3, the second equation involves only the
functions f§ and u., and, hence, when f is known from the first equation, it contains only u, as unknown,
and so on. A function that satisfies Eq. (64) with periodic boundary conditions is of the type:

p = Bcos(nd + o), (71)

with n an integer and B and « constants of integration. Substitution of (71) into (64) yields (for B # 0) the
relation

(7> = 1)g(y, 2,n) =0, (72)
where, for a given Q, g is the function of y, 4, and n defined by
gy, 2on) = (Qn* — y(Q+y —1))(n* — 1) = PQ*(Qn* +y). (73)

For all the values of y and A, Eq. (72) admits the solution n = 1, that corresponds to the following solution
of the system (64)—(70):

B = Bcos(0 + a), (74)
u. = —Dsin(0+7y), wu,=—-Rf, uy=Dcos(0+7y), (75)
Af, =0, Af=0, Afy=0, (76)

where D and y are constants of integration. The functions (74) and (75) describe infinitesimal rigid dis-
placements of the rod. Precisely, the functions § and u, describe a rigid displacement in which the circular
axial curve % rotates about a diameter, while the functions u, and uy describe a rigid displacement in which
% undergoes a translation in the plane z = 0. For a given n > 1, Eq. (72) holds if the values of the pa-
rameters y and / are such that

g, 4,n) =0. (77)

The pairs (y, 1) which satisfy this equation are the eigenvalues of the linearized equilibrium problem, to
which the following solution of the system (64)—(70) corresponds:

p = Bcos(nd + o), (78)
AQ AQ
u,szﬁ,m uZ:Uﬁ, U():nzilUﬁ, (79)
Af, = CK* B, Af.=0, Afy= Ck3U/l[)’_’9, (80)
where
2
U— _R(Qn* +y) (81)

(Q+ym* -
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In order to evaluate the stability of the rod in the annular configuration €, we examine the sign of the
second variation of #, given by Eq. (32), taking as test function d¢ the vector w corresponding to functions
of the form (78) and (79). With the use of (51)3, (55), (56), and (58), the Eq. (32) can be written as

2n

8 4 = Ak’ {(RB — t200)" + (400 + 119.0)" + QRP + 110)” + AQ( 9 (1400 + 110.0) — (.9 + t40)1t-00)
0

+ (1= y)(RBuzgo — R gu-0 — (uz0)" — R }do. (82)

When we substitute in this equation the functions (78) and (79) for f, u., u., and uy, and perform the in-
tegration, we find an expression for 8 ¢ that, after a rather lengthy computation, can be written as

Qn* +y
8?4 = nAdBk————g(y, A, n). 83
S @ +y)2n2g(y ) (83)
Thus the sign of &° ¢ is determined by the sign of the function g defined by (73). If we let
x =22 = (—Rt"), (84)

Eq. (77) can be written in the form
—P’x — Pxy+ (2 = 1)(1 = Q)y — (> —1)y* + Qn>(n* — 1) =0, (85)

that, for each n > 1, represents an hyperbola I', lying in the plane (x,y). Given Q and n, we are interested in
solutions x and y of (85) that, in view of the relations (63) and (84), are both positive. Thus we may put
x = py, with p > 0, and from (85) we obtain the equation

(1-@p—n)y*+ (" = 1)(1 — Q) — @n’p)y+ Q*(n* — 1) =0, (86)

whose left-hand member we may regard as a quadratic polynomial in y. An elementary analysis shows that,
for each n > 1 and for each p > 0, Eq. (86) has only one positive root y,, which corresponds to an unique
pair (x,,y,) that satisfies the Eq. (85) of I',:

=11 -Q)—Qn>p++/4

n = PVn; n — 5 87
=P 2@Lp+n—1) (87)
where

A= (n* = 1)(1 = Q) — @Pn’p)* +4Qn*(n* — 1)(Lp+n* —1). (88)

For a given n, the pairs of solutions (x,,,), corresponding to different values of p, lie on that of the two
branches of I', that has a non-empty intersection with the region of the plane where x > 0 and y > 0. Let y,
be the loci of the points whose coordinates (x,,y,) have the expressions (87), i.e., the segments of I', whose
points have both the coordinates positive. The curves y, can be represented in polar coordinates (p,, ) as

pa(p) =/ ()’ + (n)’, 9(p) = tan”'(1/p), (89)

where, since p > 0 and n > 1, we have n/2 > ¢ > 0, and, by (87), p,,,(p) > p,(p). In Fig. 1, with reference
to a rod for which Q = 2/3, segments of the relevant branches of the hyperbolae I',,, for the values 2, 3, and
4 of n, are drawn.

Egs. (72) and (83) show that, for n > 1, the second variation of the functional ¢ vanishes on the ei-
gencurves of the linearized system (64)—(70), whose points (4,,,) are obtained, by means of (84), from the
points of the curves (89). Given an annular ring formed from a rod whose axial curve ¢" in a natural state is
a segment of helix with curvature £“, torsion %, and length L = 2nR, let P be the point of coordinates
x= (—Rr“)2 >0 and y = Rk" > 0, and let Z be the open region of the plane (x,y), formed by points with
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y

I (@)

1 r n=2 n=3 n=4

Fig. 1. The relevant segments of the hyperbolae I',, for n = 2,3,4, and for @ = 2/3.

positive coordinates, that is bounded by the x-axis, the y-axis, and I',. Since a bifurcation may occur at the
eigenvalues of the linearized problem and an equilibrium configuration is stable when it realizes a minimum
of the energy, the previous results imply that, if P € &, the annular configuration € is stable, while if P is
external to the closure of the region 2, then g(y, 4,2) < 0, 8> # < 0, and € cannot be stable; thus, on the
curve y,, where g(y,4,2) =0 and 8 ¢ = 0, there is a bifurcation with loss of stability for the annular
configuration. In the case of infinitesimal deformations from €, when k", 7%, and L are such that the point P
is on 7y,, the functions (78) and (79), with n = 2, describe the transformation of the rod into the new
equilibrium configuration in which the axial curve is not planar. The branch of I'; containing 7y, intersects
the axes x and y at the points x, and y,, with

Xo =3/, o= ((1 — Q)+ (1 -9+ 16Q>/2. (90)

We call critical the value of one of the geometrical quantities £", |t"|, and L, if an increment in this quantity
makes unstable the annular configuration when the other two quantities are unchanged; then we have that:

(a) For given torsion 7" and length L = 2R of ¢", with (—Rr“)2 < X,, the coordinate y of the intersection
of the curve y, with the straight line x = (—Rt")* (line () in the figure) yields the critical value k* = y/R
of the curvature.

(b) For given curvature £ and length L = 2nR of 4", with Rk" < y,, the coordinate x of the intersection of
the curve y, with the straight line y = Rk" (line (b) in the figure) yields the critical absolute value
|t = v/x/R of the torsion.

(c) For given curvature £* and torsion 7" of %", the coordinates of the intersection of the curve y, with the
parabola )* = (k"/ r“)zx (curve (¢) in the figure) give the critical value L = 2nR of the length, with

R=y/k" = Vx/[z"].

In conclusion we briefly consider the case in which the annular equilibrium configuration has been
obtained by bending a naturally straight rod with the addition of a uniform twist density k3. This case
corresponds to the values
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y=0, 1=Rks, (91)

of the parameters. The equations governing the equilibrium in infinitesimal deformations from € are ob-
tained by putting y = 0 into Egs. (64)—(70). The condition (77) for the existence of non-null (and non-rigid)
solutions of these equations becomes

Q= -1, (92)
which for n = 2 yields x3 = +v/3/(QR), the well-known critical value of the twist density (cf. e.g., Zajac,
1962; on the formation of loops in ropes see also Los and Ordanovich, 2002). It follows from (83) and (91)

that a rod, whose axial curve in a natural state is a straight segment of length L = 2nR, is stable, when
deformed in an annular ring with the addition of a uniform twist density 3, if

V3
J1¢s] <ar' (93)

If we put x = (Ri;3)’, the values of x for which the annular configuration is stable when = 2/3, correspond
in Fig. 1 to the points of the x-axis between the origin and the intersection of the x-axis with the hyperbola I',.
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