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Abstract

The stability of equilibrium of non-linearly elastic rods, whose deformations obey the classical Kirchhoff�s equations,

is considered. A variational formulation of the equilibrium problem is given, and the equilibrium equations for in-

finitesimal deformations superimposed to a finite transformation of a rod are deduced. The stability of annular rings, in

which the twisting strain is non-null, is investigated by study of the second variation of the energy functional.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In this paper we examine the problem of stability of equilibrium configurations of elastic rods in the

context of a theory that is a generalization to non-linear constitutive equations of the classical Kirchhoff�s
theory of inextensible rods. According to a general concept of static stability, an equilibrium configuration

of an hyperelastic body is stable when it realizes a minimum of the energy, and, hence, the stability of a

state of equilibrium is usually examined by an analysis of the second variation of the energy functional (cf.

Coleman and Noll, 1959; Truesdell and Noll, 1965, Sections 68bis, 89; Wang and Truesdell, 1973, Chapter
VII; Iooss and Joseph, 1997, Chapter XII). In the present paper, in view of obtaining the tools for a

discussion on the stability of equilibrium of inextensible rods, we give a characterization of the equilibrium

equations as the extremals of a functional J, which is obtained by adding to the energy functional a term

that accounts for the presence of the kinematical constraint expressing the assumption that the rod axis is

inextensible. Then we deduce the form that d2J, the second variation of J, takes on an extremal, so that we

can investigate the stability of an equilibrium state by checking the sign of d2J. In the perspective of using,

to test the sign of d2J, functions having the same form as the eigenfunctions of the linearized equilibrium

problem, we also deduce the equilibrium equations for infinitesimal deformations superimposed to a finite
transformation of a rod from a natural state to a state of equilibrium. As an application of the derived

equations, we discuss the stability of annular rings for which the measure l3 of twisting strain with respect

to a natural state is non-null. These circular equilibrium configurations can be thought of as having been
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obtained by joining and sealing the two ends of rods that are open in a natural state. We consider circular

rings formed from materially homogeneous inextensible rods obeying Kirchhoff�s linear constitutive

equation and whose axes are curves of uniform curvature and torsion in a natural state. Annular equi-

librium configurations with l3 6¼ 0 are possible for two classes of rods of this type. The rods of the first class
have the shape of an helix when undeformed and, for them, the twisting strain l3 in the annular config-

uration equals the opposite of the geometric torsion of the axial curve in a natural state. The rods in the

second class are prismatic in a natural state and are deformed in a circular ring after the imposition of an

amount j3 of uniform twist density. For these rods, the twisting strain l3 in the circular equilibrium

configuration equals the twist density j3. We shall call the rods of the two classes naturally helicoidal and

naturally straight, respectively. It is known that, for a naturally straight rod, there is a critical amount of the

absolute value of the twist density j3 ¼ l3 in the circular configuration, and that, for jj3j greater than the

critical value, the annular configuration (in which the axial curve is a circle) is unstable and the rod tends to
buckle into a configuration in which the axial curve is not planar. We examine in detail the problem of

stability of annular rings formed from naturally helicoidal rods. We find that the equations governing the

stability problem for this class of rods depend on two dimensionless parameters which are defined in terms

of the (invariable) length of the axial curve and its curvature and torsion in a natural state. The values of

these two parameters for which the equations of the linearized equilibrium problem have non-trivial so-

lutions, define a family of eigencurves. The study of the sign of d2J shows that this second variation

vanishes on the eigencurves and that there is a loss of stability of the annular configuration in crossing the

first eigencurve. The results of the discussion on the stability furnish the values of the curvature, torsion,
and length of the undeformed axial curve for which the corresponding annular equilibrium configuration is

stable.

The problem of stability of elastic rods has attracted the attention of the researchers since Euler�s dis-

covery of the phenomenon of buckling (1743) and the first investigations of Euler, Daniel and John Ber-

noulli, and Lagrange on the load that may cause the bending of a compressed column (cf. Truesdell, 1960;

Timoshenko, 1983). The literature concerning the stability of rods is voluminous and continuously enriched

by new studies that elucidate previously unknown aspects of the problem or present new applications of

existing theories. Among recent contributions to the subject, we recall Green et al. (1968), Antman (1984),
Caflish and Maddocks (1984), Maddocks (1984), and refer the reader to Antman (1995) for a modern

presentation of the matter including recent results and an extensive bibliography. The interest for the

problem here considered of the stability of annular rods, besides the possible mechanical applications, is

related to the use of rod theory to construct an elastic model for the DNA molecule (cf. e.g., Coleman et al.,

1995; Swigon et al., 1998). A segment of DNA is usually represented as a double helix in which two strands

wind around a common axis that may form a closed and/or not planar curve. In applications of the

elasticity theory to the study of DNA, the molecule is usually viewed as an homogeneous inextensible elastic

rod with uniform cross-sections; a configuration of the rod specifies a configuration of the DNA molecule
because it gives the position in space of the duplex axis and the rate of twisting of the strands about the axis.

Recent studies consider the behavior of molecules of DNA in configurations that are not relaxed (natural)

states. This is the case, for instance, of the paper (Tobias et al., 1996), where some finite motions of pure

torsion possible for closed circular loops of DNA are presented, and the difference in behavior between

loops formed from naturally straight rods and loops formed from rods that possess intrinsic uniform

curvature and torsion are discussed. In cases of this type, that deal with states of equilibrium that are not

stress-free, the knowledge of the properties of stability of equilibrium configurations may be of interest.

Among recent works that employ the elastic rod model for the study of stability of DNA configurations, we
recall Tobias et al. (2000) and Coleman et al. (2000).

The present paper is organized as follows: Section 2 gives a presentation of the rod theory on which the

subsequent analysis is based; Section 3 contains a formulation of the equilibrium equations of rods as the

extremals of a functional J and includes a deduction of the second variation of this functional; in Section 4
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the equilibrium equations for infinitesimal deformations from an arbitrary equilibrium configuration of the

rod are derived; finally, in Section 5, as an application of the results of the preceding sections, the stability

of annular rings with non-null twisting strain is discussed. In the paper the summation convention is

adopted, with the agreement that Latin indices range over f1; 2; 3g and Greek indices over f1; 2g. The
symbol � is used to denote the tensor product u� v of two vectors u and v, that assigns to each vector a the

vector ða � vÞu.

2. Equilibrium equations

In the rod theory here considered the kinematics is the same as that of Kirchhoff�s non-linear theory of

inextensible rods (cf. Love, 1944; Dill, 1992; Coleman et al., 1992), but the constitutive equation for the
moment vector is more general, because it is assumed only that the rod is hyperelastic without imposing a

linear dependence of the moment upon the strain measure.

A rod R is regarded as a three-dimensional body possessing an undistorted stress-free configuration Cu

that can be described as follows: Let Cu be a smooth space curve defined by the equation xu ¼ xuðsÞ, with s
an arc-length parameter that varies over the interval ½0; L�. In the configuration Cu, the positions x̂xu of the

points of R are given by

x̂xuðX1;X2; sÞ ¼ xuðsÞ þ X1d
u
1ðsÞ þ X2d

u
2ðsÞ; ð1Þ

where the pairs ðX1;X2Þ belong to a connected plane region, and du
1ðsÞ and du

2ðsÞ are unit vectors orthogonal

to Cu at xuðsÞ and such that the triplet ðdu
1ðsÞ; d

u
2ðsÞ; d

u
3ðsÞÞ, with du

3ðsÞ ¼ dxuðsÞ=ds, is right-handed and

orthonormal. The cross-sections SðsÞ of R, i.e., the sets of points for which s is constant in (1), are assumed

to be congruent and such that they contain their centroids; the curve Cu is taken to be the locus of these

centroids. The material points that are on Cu form the axis of R, and Cu is called the axial curve of R in the

configuration Cu. For each s, the vectors du
1ðsÞ and du

2ðsÞ are chosen to have the directions of the principal
axes of inertia of SðsÞ. When the three-dimensional body R is called a rod, it is presupposed that the

maximal distance between two points of a cross-section is small compared to the length L of the axial curve.

A rod of the type here considered is inextensible in the sense that, in its deformations, the change in arc-

length distance between points of the axis can be disregarded.

In each configuration C, the points of the axis form a curve C, the axial curve of R in C, which is de-

scribed by an equation of the form x ¼ xðsÞ. Since the rod inextensible, s is an arc-length parameter for C
and the derivative of x with respect to s is the unit tangent tðsÞ at the point xðsÞ of C:

tðsÞ ¼ d

ds
xðsÞ ¼ x;sðsÞ: ð2Þ

At each point xðsÞ in the configuration C, let d1ðsÞ and d2ðsÞ be the unit vectors having the directions of the

material fibers that lie along du
1ðsÞ and du

2ðsÞ, at xuðsÞ in the configuration Cu. The vectors d1ðsÞ and d2ðsÞ
can be regarded as orthogonal to each other and to the curve C (cf. Love, 1944, Art. 252; Dill, 1992). The
configuration C is determined by giving: (i) the equation x ¼ xðsÞ of the axial curve C, and (ii) the vector-

valued function d1 ¼ d1ðsÞ. Then, at each point xðsÞ of C can be associated a triad ðd1ðsÞ; d2ðsÞ; d3ðsÞÞ of

orthonormal vectors, with d3ðsÞ ¼ tðsÞ and d2ðsÞ ¼ d3ðsÞ 
 d1ðsÞ. Since the triplets ðd1; d2; d3Þ are formed

by orthogonal unit vectors, there exists a vector

jðsÞ ¼ jiðsÞd iðsÞ ¼
1

2
d iðsÞ 
 d i;sðsÞ; ð3Þ

called the curvature vector for the configuration C, such that

d i;sðsÞ ¼ jðsÞ 
 d iðsÞ; i ¼ 1; 2; 3: ð4Þ
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The components ja ¼ j � da of j are called components of curvature and give the geometric curvature k of

the axial curve through the formula k ¼ ffiffiffiffiffiffiffiffiffi
jaja

p
; the component j3 ¼ j � d3, along the tangent to C, gives the

twist density of R in the configuration C. The unit vectors d1ðsÞ and d2ðsÞ lie in the plane of, but are in

general distinct from, the principal normal nðsÞ and the binormal bðsÞ of C at xðsÞ. We denote by uðsÞ the
angle from nðsÞ to d1ðsÞ. The twist density j3 of C and the geometric torsion s of C are related by

j3 ¼ s þ u;s: ð5Þ

Let ju be the curvature vector in the undistorted stress-free configuration Cu, and let R be the rotation that

transforms the triplets ðdu
1 ; d

u
2 ; d

u
3Þ into the triplets ðd1; d2; d3Þ:

RðsÞ ¼ d iðsÞ � du
i ðsÞ; d iðsÞ ¼ RðsÞdu

i ðsÞ; i ¼ 1; 2; 3: ð6Þ

The vector

l ¼ j � Rju ¼ 1

2
Rdu

i 
 R;sd
u
i ; ð7Þ

is the strain measure in the deformation that transforms the rod from Cu to C; the components of l are:

li ¼ l � d i ¼ ji � ju
i ; i ¼ 1; 2; 3; ð8Þ

with ju
i ¼ ju � du

i . The first two components of l give a measure of the flexural deformation of R; the third

component measures the twisting strain, given by the change in twist density.

When the only external loads acting on the rod are forces and couples applied to the ends, in an equi-

librium configuration C the following equations hold:

f ;s ¼ 0; m;s þ d3 
 f ¼ 0; ð9Þ

where f ¼ f ðsÞ, the force vector, is the resultant of the stresses acting on the cross-section at s, and

m ¼ mðsÞ, the moment vector, is the resultant moment of these stresses about the centroid of the section.

The force f is a reactive variable that is not constitutively determined; the moment m is obtained from the

strain measure through a constitutive equation. We assume that the rod is hyperelastic, with a strain energy

density per unit length r ¼ rðl1; l2; l3; sÞ such that

m ¼ mid i; mi ¼ m � d i ¼
or
oli

; i ¼ 1; 2; 3: ð10Þ

The components m1 and m2 of m are the bending moments, and the component m3 is the twisting moment. In
addition to Eq. (9), with m given by (10), in an equilibrium configuration must hold the equation

d3 ¼ x;s; ð11Þ

which follows from the assumption that the rod axis is inextensible. We shall refer to this constraint as the

condition of inextensibility.

When Cu is assumed as reference configuration, a deformation of R can be described by specification of
the displacement u of the points of the axis,

uðsÞ ¼ xðsÞ � xuðsÞ; ð12Þ
and the rotation R defined by (6)1. Thus a deformation of R is determined by six scalar functions: the three

components of u and three parameters defining R, which are usually chosen to be Euler angles. These six

functions cannot be assigned arbitrarily because, by (6)2, (11), and (12), they must be such that

ðR� IÞdu
3 ¼ u;s; ð13Þ
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where I is the unit tensor. Eq. (13) expresses the condition of inextensibility in terms of R and u. In view of

(6), (7) and (10), the equilibrium equations (9) and the constraint equation (13) form a system of three

(vectorial) equations for the three unknowns u, R, and f .
In the following two sections, that treat the variational formulation and the linearization of the equi-

librium equations, we do not specify the form of the strain energy density, and in particular we do not

assume that the components of m are linear functions of the components of l. In the special case in which

this assumption is made and the rod is composed of an isotropic material, Eqs. (10)2 reduce to the classical

Kirchhoff�s linear constitutive relations in which

r ¼ 1

2
ðA1ðl1Þ

2 þ A2ðl2Þ
2 þ Cðl3Þ

2Þ; ð14Þ

and, hence,

ma ¼ Aala ¼ Aaðja � ju
aÞ; a ¼ 1; 2; ðno sumÞ

m3 ¼ Cl3 ¼ Cðj3 � ju
3Þ;

ð15Þ

where A1 and A2 are the flexural rigidities and C is the torsional rigidity of the cross-sections. We shall adopt

a constitutive equation of the type (15) in Section 5 where the stability of annular rods is discussed.

3. Variational formulation

In this section we formulate a variational principle that characterizes the equilibrium configurations of an

hyperelastic rod R as the extremals of a functional J in which the force vector appears as a Lagrange
multiplier associated with the kinematical constraint (13). In view of applying our results to investigations

on the stability of equilibrium states, we also deduce the expression that the second variation of J assumes

on an extremal, that is in correspondence of an equilibrium configuration of R.

Let C be an equilibrium configuration in which the rod R has been transformed from a stress-

free reference configuration Cu. The configuration C is determined by the displacement u of the points

of the axis from the curve Cu, and the rotation R that transforms the vectors du
i of Cu into the vectors

d i of C. A variation in the configuration C is characterized by a variation du of u and a variation dR
of R. As a consequence of the condition of inextensibility (13), the functions du and dR are not inde-
pendent.

We observe that the variation dR determines the variations dd i of the vectors d i and vice versa. Namely, it

follows from Eqs. (6)2 that in correspondence of a variation dR the vectors d i undergo the variations

dd i ¼ ðdRÞdu
i ¼ ðdRÞRTd i; i ¼ 1; 2; 3: ð16Þ

Let dq denote the axial vector corresponding to the skew-tensor ðdRÞRT, i.e., the vector dq such that

dq
 a ¼ ðdRÞRTa for each vector a. The relationship between dq and dR can be expressed by the formulae

dq ¼ 1

2
d i 
 ðdRÞRTd i; dR ¼ d i � RTðd i 
 dqÞ; ð17Þ

and, in terms of the vector dq, the variations of the vectors d i can be written as

dd i ¼ dq
 d i; i ¼ 1; 2; 3: ð18Þ
Eqs. (16)–(18) imply that

dq ¼ 1

2
d i 
 dd i; dR ¼ �d i � RTðdd iÞ; ð19Þ
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and thus that the variations dd i determine dq and dR. Eqs. (3), (7), (17), and (18) yield that the variation of

the strain measure l has the form

dl ¼ dq;s þ dq
 l: ð20Þ

From this equation, taking (18) into account, we have the following expressions for the variations of the

components of l:

dli ¼ dðl � d iÞ ¼ dq;s � d i; i ¼ 1; 2; 3: ð21Þ

Then from the constitutive equation (10), in view of (18) and (21), we deduce that

dr ¼ or
oli

dli ¼ m � dq;s; ð22Þ

and

dm ¼ d
or
oli

d i

� �
¼ Cdq;s þ dq
m; ð23Þ

where the second-order tensor C is defined by

C ¼ o2r
oliolj

d i � d j: ð24Þ

Eq. (22) yields that the variation of the strain energy U of R can be written as

dU ¼ d
Z L

0

rds ¼ �
Z L

0

m;s � dqdsþ m � dq½ �L0 : ð25Þ

We denote by W the work done by the external forces f̂f and couples bmm acting on the end sections of R, and

consider the functional

J ¼ U�WþL; ð26Þ
obtained by adding to the energy associated with a deformation of R the term

L ¼
Z L

0

n � ðu;s � ðR� IÞdu
3Þds; ð27Þ

which accounts for the condition of inextensibility (13), and in which the vector n is a Lagrange multiplier.

Provided that n is identified with the force vector, the equilibrium equations of the rod are equivalent to

the condition that the equation

dJ ¼ dU� dWþ dL ¼ 0; ð28Þ
holds for all smooth vectors du and dq. When the external loads are assigned on both the ends of R, in Eq.

(28) the variation of the work done by the external loads is

dW ¼ f̂f � du
h

þ bmm � dq
iL

0
; ð29Þ

where the form of the variation of the work done by the couples bmm is motivated by the form of the last term

in Eq. (25). By means of integration by parts, with the use of (18) and (25), and after identification of n with

f , Eq. (28) can be written as

dJ ¼ �
Z L

0

f ;s � duds�
Z L

0

ðm;s þ d3 
 f Þ � dqdsþ ðf
h

� f̂f Þ � duþ ðm� bmmÞ � dq
iL

0
¼ 0: ð30Þ
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The form of this equation makes clear that dJ ¼ 0 for all du and dq if and only if the equilibrium equations

(9) hold in ð0; LÞ, and, on the end sections, the force and moment vectors are equal to the applied external

loads f̂f and bmm. We observe that the energy functional E associated with a deformation of R is given by

E ¼ U�W, and that the variation (30) of J coincides with the variation of the functional E for variations
of u and R which, in consequence of (13), obey the constraint

du;s ¼ dq
 d3: ð31Þ

Thus Eq. (30)2 can be regarded as expressing the condition that in equilibrium the energy functional E is

stationary, and the second variations of the functionals E and J coincide.
The form that the second variation d2J assumes in correspondence of a state of equilibrium of the rod

can be derived from Eq. (30) taking into account that, on an extremal, the equilibrium equations hold and

thus the terms involving d2u and d2q vanish. With the use of (18) and (23), and after integration by parts, we

find that the second variation of J evaluated in correspondence of an equilibrium configuration is

d2J ¼
Z L

0

ðdm � dq;s þ dq
 d3 � dq
 f Þds: ð32Þ

The sign of the expression (32) of d2J gives essential information on the stability of an equilibrium con-

figuration. In particular, since a state of equilibrium in which the energy attains a minimum is regarded as

stable, if d2J < 0 in an equilibrium configuration, a necessary condition for minimization is not satisfied

and the equilibrium cannot be stable (cf., e.g., Antman, 1995, Chapter VII). Since, in what follows, to test

the sign of d2J, we will use functions having the same form as the eigenfunctions of the linearized equi-

librium problem, in next section we consider infinitesimal deformations from an arbitrary equilibrium

configuration of a rod.

4. Linearization

In the deduction of the equilibrium equations for infinitesimal deformations superimposed to a finite

deformation of a rod, one is concerned with three configurations: a stress-free configuration Cu, an equi-

librium configuration C that is assumed as reference configuration, and an equilibrium configuration C0 that
is thought of as having been obtained through a deformation starting from C. We denote by a ‘‘prime’’ the

quantities pertaining to the configuration C0, and introduce the rotation R0 that transforms the vectors d i of

C into the vectors d 0
i of C0:

R0 ¼ d 0
i � d i; d 0

i ¼ R0d i; i ¼ 1; 2; 3: ð33Þ
In the configuration C0, the strain measure l0 can be written as

l0 ¼ R0l þ Dl; ð34Þ
where l is the strain measure (7) in C and, letting j0 be the curvature vector for C0,

Dl ¼ j0 � R0j ¼ 1

2
R0d i 
 R0

;sd i: ð35Þ

The moment m0 in C0 is

m0 ¼ m0
id

0
i; ð36Þ

with m0
i ¼ miðl0

1; l
0
2; l

0
3; sÞ. Since the rod is in equilibrium in C0, in this configuration we have

f 0;s ¼ 0; m0
;s þ d 0

3 
 f 0 ¼ 0; ð37Þ

where f 0 is the force vector in C0.
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We wish to find the form that Eqs. (37) assume in cases in which the state of strain and stress in the

configuration C0 differs only slightly from the state in the configuration C. To this end, we observe that the

rotation R0 is determined by the unit vector z, giving the direction of the axis of rotation of R0, and the angle

/ measuring the rotation about z. Denoted by W the skew-tensor corresponding to the vector w ¼ /z, the
rotation R0 can be written in the form R0 ¼ eW , which yields

R0 ¼ I þW þ OðjW j2Þ: ð38Þ

It follows from (33)2, (34), (35) and (38) that, when the vector w and its first derivative are small, at the first

order the expressions of the vectors d 0
i, l0, and Dl are

d 0
i ¼ d i þ w
 d i; i ¼ 1; 2; 3; ð39Þ

l0 ¼ l þ w
 l þ w;s; ð40Þ

Dl ¼ w;s: ð41Þ

In order to obtain the linearized expression of the constitutive equation, we observe that for the compo-

nents m0
i of m0 we have

m0
i ¼ mi þ

omi

olj
Dlj þ OðjDlj2Þ; i ¼ 1; 2; 3; ð42Þ

where Dlj ¼ l0
j � lj, and jDlj2 ¼ DljDlj. With the use of (33)2, (34), (38) and (42), Eq. (36) yields that, at

the same order to within (39)–(41) hold, m0 is given by

m0 ¼ mþ w
mþ Dm; ð43Þ

where

Dm ¼ Cw;s; ð44Þ

and C is the tensor defined by (24). In analogy with the form of the linearized constitutive equation (43), we

write the force vector as

f 0 ¼ f þ w
 f þ Df : ð45Þ

Substitution of (39), (43) and (45) into Eqs. (37), taking into account that C is an equilibrium configuration,
yields that, when w, its first two derivatives, and Df are small, the equilibrium equations for infinitesimal

deformations superimposed to the finite deformation that transforms Cu into C, are

w;s 
 f þ Df ;s ¼ 0; ð46Þ

w;s 
mþ Dm;s þ d3 
 Df ¼ 0; ð47Þ

with Dm given by Eq. (44). Moreover, from the Eq. (39) and the condition of inextensibility (11) written for

d 0
3, it follows that, at the first order,

u;s ¼ w
 d3; ð48Þ

where u is the displacement of the points of the axis from the axial curve C of the configuration C.

Eqs. (46)–(48), with Dm given by (44), constitute a system for the unknown vector functions u, w, and Df .
Eq. (48), which gives the linear form of the condition that the rod axis is inextensible, implies that the

displacement u is such that
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u;s � d3 ¼ 0; ð49Þ
and that the vector w can be written as

w ¼ d3 
 u;s þ bd3: ð50Þ
This last equation shows that, at each xðsÞ, the vector u;sðsÞ determines the two components of wðsÞ in the

plane orthogonal to the axial curve C. Thus, given u, only one more scalar function of s (i.e., b) suffices to

complete the description of w. The function b appearing in Eq. (50) is the same as that introduced in Love

(1944, Art. 288) and has the same meaning of being the angle through which a section is rotated about the

axis in an infinitesimal deformation. In the system (46)–(48), Eq. (48) can be substituted by Eqs. (49) and

(50); thus, Eqs. (46), (47), and (49), with w given by (50) and Dm by (44), form a system for seven scalar

unknowns: the three components of u, b, and the three components of Df .

5. Stability of annular rings with non-null twisting strain

The results of the preceding sections are now applied to a discussion on the stability of circular equi-

librium configurations, in which the twisting strain l3 is non-null and that are obtained from materially

homogeneous elastic rods that possess uniform curvature and torsion in an undistorted stress-free con-

figuration. The rods we consider are made of a material obeying Kirchhoff�s constitutive equation (15) and

possess kinetic symmetry (Love, 1944, Art. 255) in the sense that in Cu the two principal moments of inertia

of their sections are equal and, hence, we can put A1 ¼ A2 ¼ A in Eqs. (15). For a rod of this type, an

annular equilibrium configuration with l3 6¼ 0 is possible only if the axial curve in a natural state is a

segment of either a cylindrical helix or straight line (Lembo, 2001), i.e., only if the rod is naturally helicoidal
or naturally straight. In that case, the circular ring is obtained from the natural state by sealing the two ends

of the rod after the imposition of a deformation with appropriate amounts of uniform flexural and twisting

strains.

In the annular equilibrium configuration C, the axial curve C of R is a circle of radius R, with curvature

k ¼ 1=R and torsion s ¼ 0. Let ðer; ez; ehÞ be the basis of a system of cylindrical coordinates ðr; z; hÞ for

which the origin is at the center of C, the z-axis is orthogonal to the plane containing C, and the vector er
has at each point of the space the direction pointing toward the z-axis. Along the axial curve C the basis

of the cylindrical coordinate system coincides with the Frenet basis ðn; b; tÞ formed by the principal
normal, the binormal, and the tangent. We select the origin of the coordinate h in such a way that we

have h ¼ 0 at the point of C where s ¼ 0, and hence h ¼ ks. In this system of cylindrical coordinates the

vectors d1, d2, and d3 have the expressions

d1 ¼ cos uer þ sin uez; d2 ¼ � sin uer þ cos uez; d3 ¼ eh; ð51Þ
where, as in Eq. (5), u denotes the angle from n ¼ er to d1. Introduction of the expressions (51) into Eq. (3),

shows that the curvature vector for C is

j ¼ kðez þ u;hehÞ; ð52Þ

where, as we shall do in what follows, we have replaced the independent variable s by h ¼ ks.
We firstly consider the more complex case in which in the configuration Cu the axial curve Cu is a segment

of an helix. Let ku > 0 and su 6¼ 0 be the (uniform) curvature and torsion of Cu, and let ðnu; bu; tuÞ be the

Frenet basis for this curve. Since the rod is kinetically symmetric and Cu is stress-free, at each s the triad
ðdu

1; d
u
2 ; d

u
3Þ can be chosen coinciding with the Frenet basis of the helix. It follows from (3) that the curvature

vector in Cu is

ju ¼ kudu
2 þ sudu

3 : ð53Þ
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Eqs. (7), (52), and (53) yield that the strain measure in the deformation from Cu to C is:

l ¼ ku sin uer þ ðk � ku cos uÞez þ ðku;h � suÞeh: ð54Þ

It is possible to show (cf. e.g., Lembo, 2001) that in the presence of the strain (54) and with m given by

Kirchhoff�s constitutive equation (15), the equilibrium equations (9) can be satisfied only if u has the values

0 or �p. Eqs. (51) show that the vectors du
1 ¼ nu and du

2 ¼ bu are transformed in er ¼ n and ez ¼ b if u ¼ 0,

and in �er and �ez if u ¼ �p. We shall not consider the case u ¼ �p because the corresponding config-

urations are known to be unstable (Tobias et al., 1996). If u ¼ 0, from Eqs. (15), (51), and (54) we have that

in C the moment is

m ¼ mzez þ mheh ¼ Aðk � kuÞez � Csueh: ð55Þ

Then the equilibrium equations (9) require that the force vector must be

f ¼ kmhez ¼ �kCsuez: ð56Þ
In components with respect to the cylindrical coordinate system, the displacement of the points of the axial

curve in an infinitesimal deformation from C has the expression

u ¼ urer þ uzez þ uheh; ð57Þ
which, substituted into Eq. (50), furnishes

w ¼ wrer þ wzez þ wheh ¼ �kuz;her þ kður;h þ uhÞez þ beh: ð58Þ
For a kinetically symmetric rod, the strain energy r is given by (14) with A1 ¼ A2 ¼ A. Accordingly, the

tensor C defined by (24) is

C ¼ Aðer � er þ ez � ezÞ þ Ceh � eh; ð59Þ
and, in view of (58), the constitutive equation (44) becomes

Dm ¼ Ak ðbð � kuz;hhÞer þ kður;hh þ uh;hÞezÞ þ Ckðb;h þ kuz;hÞeh: ð60Þ

We denote by Dfr, Dfz, and Dfh the components of the vector Df :

Df ¼ Dfrer þ Dfzez þ Dfheh: ð61Þ
When Eqs. (55), (56), (58), (60), and (61) are introduced into the linearized equilibrium equations (46), (47)

and (49), a system of seven scalar equations for the seven unknown functions b, ur, uz, uh, Dfr, Dfz, and Dfh

is obtained. In order to write this system in a form more suitable for a discussion on the stability, we in-

troduce the dimensionless quantities X, y, and k, that are defined as

X ¼ C=A; y ¼ ku=k ¼ Rku; k ¼ �su=k ¼ �Rsu; ð62Þ
and satisfy the relations

X > 0; y > 0; k 6¼ 0: ð63Þ
When kðX þ yÞ 6¼ 0, condition which in view of (63) always holds, the system of seven equations of the

linearized equilibrium problem is equivalent (cf., e.g., Ince, 1956, Chapter VI.41) to the system:

Xb;hhhhhh þ ðyðX þ y � 1Þ þ Xð2 þ k2X2ÞÞb;hhhh þ ð2yðX þ y � 1Þ þ X þ k2X2ðX � yÞÞb;hh

þ yðX þ y � 1 � k2X2Þb ¼ 0; ð64Þ

ðX þ yÞkuz;hh þ Xb;hh � yb ¼ 0; ð65Þ

kXkðuh þ uh;hhÞ;hh þ ðX þ yÞb;hh � kuz;hhhh þ ðX þ y � 1Þkuz;hh ¼ 0; ð66Þ
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uh;h � ur ¼ 0; ð67Þ

Dfz þ Ak3uz;hhh � Ak3ðX þ y � 1Þuz;h � Ak2ðX þ yÞb;h � kCk3ður;h þ uhÞ;h ¼ 0; ð68Þ

Dfr � kCk2ðb þ kuz;hhhhÞ � Ak3ðuh þ uh;hhÞ;hhhh ¼ 0; ð69Þ

Dfh þ Dfr;h � kCk2ðb þ kuzÞ;h ¼ 0; ð70Þ

in which the first equation involves only the unknown function b, the second equation involves only the

functions b and uz, and, hence, when b is known from the first equation, it contains only uz as unknown,

and so on. A function that satisfies Eq. (64) with periodic boundary conditions is of the type:

b ¼ B cosðnh þ aÞ; ð71Þ

with n an integer and B and a constants of integration. Substitution of (71) into (64) yields (for B 6¼ 0) the

relation

ðn2 � 1Þgðy; k; nÞ ¼ 0; ð72Þ

where, for a given X, g is the function of y, k, and n defined by

gðy; k; nÞ ¼ Xn2
�

� yðX þ y � 1Þ
	
ðn2 � 1Þ � k2X2ðXn2 þ yÞ: ð73Þ

For all the values of y and k, Eq. (72) admits the solution n ¼ 1, that corresponds to the following solution

of the system (64)–(70):

b ¼ B cosðh þ aÞ; ð74Þ

ur ¼ �D sinðh þ cÞ; uz ¼ �Rb; uh ¼ D cosðh þ cÞ; ð75Þ

Dfr ¼ 0; Dfz ¼ 0; Dfh ¼ 0; ð76Þ
where D and c are constants of integration. The functions (74) and (75) describe infinitesimal rigid dis-

placements of the rod. Precisely, the functions b and uz describe a rigid displacement in which the circular

axial curve C rotates about a diameter, while the functions ur and uh describe a rigid displacement in which

C undergoes a translation in the plane z ¼ 0. For a given n > 1, Eq. (72) holds if the values of the pa-
rameters y and k are such that

gðy; k; nÞ ¼ 0: ð77Þ
The pairs ðy; kÞ which satisfy this equation are the eigenvalues of the linearized equilibrium problem, to

which the following solution of the system (64)–(70) corresponds:

b ¼ B cosðnh þ aÞ; ð78Þ

ur ¼
kX

n2 � 1
Ub;h; uz ¼ Ub; uh ¼

kX
n2 � 1

Ub; ð79Þ

Dfr ¼ Ck2kb; Dfz ¼ 0; Dfh ¼ Ck3Ukb;h; ð80Þ

where

U ¼ �RðXn2 þ yÞ
ðX þ yÞn2

: ð81Þ
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In order to evaluate the stability of the rod in the annular configuration C, we examine the sign of the

second variation of J, given by Eq. (32), taking as test function dq the vector w corresponding to functions

of the form (78) and (79). With the use of (51)3, (55), (56), and (58), the Eq. (32) can be written as

d2J ¼ Ak3

Z 2p

0

fðRb � uz;hhÞ2 þ ður;hh þ uh;hÞ2 þ XðRb þ uz;hÞ2 þ kXðuz;hður;hh þ uh;hÞ � ður;h þ uhÞuz;hhÞ

þ ð1 � yÞðRbuz;hh � Rb;huz;h � ðuz;hÞ2 � R2b2Þgdh: ð82Þ

When we substitute in this equation the functions (78) and (79) for b, ur, uz, and uh, and perform the in-

tegration, we find an expression for d2J that, after a rather lengthy computation, can be written as

d2J ¼ pAB2k
Xn2 þ y

ðX þ yÞ2n2
gðy; k; nÞ: ð83Þ

Thus the sign of d2J is determined by the sign of the function g defined by (73). If we let

x ¼ k2 ¼ ð�RsuÞ2; ð84Þ

Eq. (77) can be written in the form

�X3n2x� X2xy þ ðn2 � 1Þð1 � XÞy � ðn2 � 1Þy2 þ Xn2ðn2 � 1Þ ¼ 0; ð85Þ

that, for each n > 1, represents an hyperbola Cn lying in the plane ðx; yÞ. Given X and n, we are interested in

solutions x and y of (85) that, in view of the relations (63) and (84), are both positive. Thus we may put

x ¼ py, with p > 0, and from (85) we obtain the equation

ð1 � X2p � n2Þy2 þ ðn2
�

� 1Þð1 � XÞ � X3n2p
	
y þ Xn2ðn2 � 1Þ ¼ 0; ð86Þ

whose left-hand member we may regard as a quadratic polynomial in y. An elementary analysis shows that,

for each n > 1 and for each p > 0, Eq. (86) has only one positive root yn, which corresponds to an unique

pair ðxn; ynÞ that satisfies the Eq. (85) of Cn:

xn ¼ pyn; yn ¼
ðn2 � 1Þð1 � XÞ � X3n2p þ

ffiffiffiffi
D

p

2ðX2p þ n2 � 1Þ
; ð87Þ

where

D ¼ ððn2 � 1Þð1 � XÞ � X3n2pÞ2 þ 4Xn2ðn2 � 1ÞðX3p þ n2 � 1Þ: ð88Þ

For a given n, the pairs of solutions ðxn; ynÞ, corresponding to different values of p, lie on that of the two

branches of Cn that has a non-empty intersection with the region of the plane where x > 0 and y > 0. Let cn
be the loci of the points whose coordinates ðxn; ynÞ have the expressions (87), i.e., the segments of Cn whose

points have both the coordinates positive. The curves cn can be represented in polar coordinates ðqn; #Þ as

qnðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxnÞ2 þ ðynÞ2

q
; #ðpÞ ¼ tan�1ð1=pÞ; ð89Þ

where, since p > 0 and n > 1, we have p=2 > # > 0, and, by (87), qnþ1ðpÞ > qnðpÞ. In Fig. 1, with reference

to a rod for which X ¼ 2=3, segments of the relevant branches of the hyperbolae Cn, for the values 2, 3, and

4 of n, are drawn.

Eqs. (72) and (83) show that, for n > 1, the second variation of the functional J vanishes on the ei-

gencurves of the linearized system (64)–(70), whose points ðkn; ynÞ are obtained, by means of (84), from the

points of the curves (89). Given an annular ring formed from a rod whose axial curve Cu in a natural state is

a segment of helix with curvature ku, torsion su, and length L ¼ 2pR, let P be the point of coordinates
x ¼ ð�RsuÞ2 > 0 and y ¼ Rku > 0, and let D be the open region of the plane ðx; yÞ, formed by points with
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positive coordinates, that is bounded by the x-axis, the y-axis, and C2. Since a bifurcation may occur at the

eigenvalues of the linearized problem and an equilibrium configuration is stable when it realizes a minimum

of the energy, the previous results imply that, if P 2 D, the annular configuration C is stable, while if P is

external to the closure of the region D, then gðy; k; 2Þ < 0, d2J < 0, and C cannot be stable; thus, on the

curve c2, where gðy; k; 2Þ ¼ 0 and d2J ¼ 0, there is a bifurcation with loss of stability for the annular

configuration. In the case of infinitesimal deformations from C, when ku, su, and L are such that the point P
is on c2, the functions (78) and (79), with n ¼ 2, describe the transformation of the rod into the new

equilibrium configuration in which the axial curve is not planar. The branch of C2 containing c2 intersects

the axes x and y at the points xo and yo, with

xo ¼ 3=X2; yo ¼ ð1
�

� XÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 � XÞ2 þ 16X

q ��
2: ð90Þ

We call critical the value of one of the geometrical quantities ku, jsuj, and L, if an increment in this quantity

makes unstable the annular configuration when the other two quantities are unchanged; then we have that:

(a) For given torsion su and length L ¼ 2pR of Cu, with ð�RsuÞ2 < xo, the coordinate y of the intersection

of the curve c2 with the straight line x ¼ ð�RsuÞ2 (line (a) in the figure) yields the critical value ku ¼ y=R
of the curvature.

(b) For given curvature ku and length L ¼ 2pR of Cu, with Rku < yo, the coordinate x of the intersection of
the curve c2 with the straight line y ¼ Rku (line (b) in the figure) yields the critical absolute value

jsuj ¼ ffiffiffi
x

p
=R of the torsion.

(c) For given curvature ku and torsion su of Cu, the coordinates of the intersection of the curve c2 with the

parabola y2 ¼ ðku=suÞ2x (curve (c) in the figure) give the critical value L ¼ 2pR of the length, with

R ¼ y=ku ¼ ffiffiffi
x

p
=jsuj.

In conclusion we briefly consider the case in which the annular equilibrium configuration has been

obtained by bending a naturally straight rod with the addition of a uniform twist density j3. This case
corresponds to the values

Fig. 1. The relevant segments of the hyperbolae Cn, for n ¼ 2; 3; 4; and for X ¼ 2=3.
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y ¼ 0; k ¼ Rj3; ð91Þ

of the parameters. The equations governing the equilibrium in infinitesimal deformations from C are ob-

tained by putting y ¼ 0 into Eqs. (64)–(70). The condition (77) for the existence of non-null (and non-rigid)

solutions of these equations becomes

k2X2 ¼ n2 � 1; ð92Þ
which for n ¼ 2 yields j3 ¼ �

ffiffiffi
3

p
=ðXRÞ, the well-known critical value of the twist density (cf. e.g., Zajac,

1962; on the formation of loops in ropes see also Los and Ordanovich, 2002). It follows from (83) and (91)

that a rod, whose axial curve in a natural state is a straight segment of length L ¼ 2pR, is stable, when

deformed in an annular ring with the addition of a uniform twist density j3, if

jj3j <
ffiffiffi
3

p

XR
: ð93Þ

If we put x ¼ ðRj3Þ2, the values of x for which the annular configuration is stable when X ¼ 2=3, correspond

in Fig. 1 to the points of the x-axis between the origin and the intersection of the x-axis with the hyperbola C2.
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